SIMULTANEOUS DIOPHANTINE APPROXIMATION IN R2 × C × Qp

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Diophantine Approximation

Using a method suggested by E. S. Barnes, it is shown that the simultaneous inequalities r(p — arf < c, r(q — fir) < c have an infinity of integral solutions p, q, r (with r > 0), for arbitrary irrationals a and /3, provided that c > 1/2.6394. This improves an earlier result of Davenport, who shows that the same conclusion holds if c > 1/46"" = 1/2.6043 • • •.

متن کامل

Simultaneous Diophantine Approximation on Planar

Let C be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in R 2 with two independent approximation functions; that is if a certain sum converges then the set of all points (x, y) on the curve which satisfy simultaneously the inequalities qx < ψ1(q) and qy < ψ2(q) infinitely often has induced measure 0. This co...

متن کامل

Distributed computing of simultaneous Diophantine approximation problems

In this paper we present the Multithreaded Advanced Fast Rational Approximation algorithm – MAFRA – for solving n-dimensional simultaneous Diophantine approximation problems. We show that in some particular applications the Lenstra-Lenstra-Lovász (L) algorithm can be substituted by the presented one in order to reduce their practical running time. MAFRA was implemented in the following architec...

متن کامل

Simultaneous inhomogeneous Diophantine approximation on manifolds

In 1998, Kleinbock & Margulis [KM98] established a conjecture of V.G. Sprindzuk in metrical Diophantine approximation (and indeed the stronger Baker-Sprindzuk conjecture). In essence the conjecture stated that the simultaneous homogeneous Diophantine exponent w0(x) = 1/n for almost every point x on a non-degenerate submanifold M of Rn. In this paper the simultaneous inhomogeneous analogue of Sp...

متن کامل

Quadratic approximation in Qp

Let p be a prime number. Let w2 and w ∗ 2 denote the exponents of approximation defined by Mahler and Koksma, respectively, in their classifications of p-adic numbers. It is well-known that every p-adic number ξ satisfies w∗ 2(ξ) ≤ w2(ξ) ≤ w∗ 2(ξ) + 1, with w∗ 2(ξ) = w2(ξ) = 2 for almost all ξ. By means of Schneider’s continued fractions, we give explicit examples of p-adic numbers ξ for which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tatra Mountains Mathematical Publications

سال: 2013

ISSN: 1210-3195

DOI: 10.2478/tmmp-2013-0028